3.200 \(\int \frac{\sec (c+d x)}{(b \sec (c+d x))^{4/3}} \, dx\)

Optimal. Leaf size=55 \[ -\frac{3 \sin (c+d x) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{2}{3},\frac{5}{3},\cos ^2(c+d x)\right )}{4 d \sqrt{\sin ^2(c+d x)} (b \sec (c+d x))^{4/3}} \]

[Out]

(-3*Hypergeometric2F1[1/2, 2/3, 5/3, Cos[c + d*x]^2]*Sin[c + d*x])/(4*d*(b*Sec[c + d*x])^(4/3)*Sqrt[Sin[c + d*
x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.02957, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {16, 3772, 2643} \[ -\frac{3 \sin (c+d x) \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};\cos ^2(c+d x)\right )}{4 d \sqrt{\sin ^2(c+d x)} (b \sec (c+d x))^{4/3}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(b*Sec[c + d*x])^(4/3),x]

[Out]

(-3*Hypergeometric2F1[1/2, 2/3, 5/3, Cos[c + d*x]^2]*Sin[c + d*x])/(4*d*(b*Sec[c + d*x])^(4/3)*Sqrt[Sin[c + d*
x]^2])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3772

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{(b \sec (c+d x))^{4/3}} \, dx &=\frac{\int \frac{1}{\sqrt [3]{b \sec (c+d x)}} \, dx}{b}\\ &=\frac{\left (\left (\frac{\cos (c+d x)}{b}\right )^{2/3} (b \sec (c+d x))^{2/3}\right ) \int \sqrt [3]{\frac{\cos (c+d x)}{b}} \, dx}{b}\\ &=-\frac{3 \cos ^2(c+d x) \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};\cos ^2(c+d x)\right ) (b \sec (c+d x))^{2/3} \sin (c+d x)}{4 b^2 d \sqrt{\sin ^2(c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.0151685, size = 58, normalized size = 1.05 \[ -\frac{3 \sqrt{-\tan ^2(c+d x)} \cot (c+d x) \text{Hypergeometric2F1}\left (-\frac{1}{6},\frac{1}{2},\frac{5}{6},\sec ^2(c+d x)\right )}{b d \sqrt [3]{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(b*Sec[c + d*x])^(4/3),x]

[Out]

(-3*Cot[c + d*x]*Hypergeometric2F1[-1/6, 1/2, 5/6, Sec[c + d*x]^2]*Sqrt[-Tan[c + d*x]^2])/(b*d*(b*Sec[c + d*x]
)^(1/3))

________________________________________________________________________________________

Maple [F]  time = 0.085, size = 0, normalized size = 0. \begin{align*} \int{\sec \left ( dx+c \right ) \left ( b\sec \left ( dx+c \right ) \right ) ^{-{\frac{4}{3}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(b*sec(d*x+c))^(4/3),x)

[Out]

int(sec(d*x+c)/(b*sec(d*x+c))^(4/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )}{\left (b \sec \left (d x + c\right )\right )^{\frac{4}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(b*sec(d*x+c))^(4/3),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)/(b*sec(d*x + c))^(4/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\left (b \sec \left (d x + c\right )\right )^{\frac{2}{3}}}{b^{2} \sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(b*sec(d*x+c))^(4/3),x, algorithm="fricas")

[Out]

integral((b*sec(d*x + c))^(2/3)/(b^2*sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (c + d x \right )}}{\left (b \sec{\left (c + d x \right )}\right )^{\frac{4}{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(b*sec(d*x+c))**(4/3),x)

[Out]

Integral(sec(c + d*x)/(b*sec(c + d*x))**(4/3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )}{\left (b \sec \left (d x + c\right )\right )^{\frac{4}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(b*sec(d*x+c))^(4/3),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)/(b*sec(d*x + c))^(4/3), x)